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Depth sectioning of attenuation
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We derive an approach for imaging attenuative sample parameters with a confocal scanning system. The tech-
nique employs computational processing to form the estimate in a pixel-by-pixel manner from measurements
at the Fourier plane, rather than detecting a focused point at a pinhole. While conventional imaging system
analysis and design assumes an independent scatterer at each point in the sample, attenuation must be
treated with a tomographic approach. We show that a simple estimator may be derived that requires minimal
computation and compare it to the conventional pinhole estimate. The method can potentially be used to image
attenuation parameters and occlusion with incoherent detection, as well as refractive index variation with co-
herent detection, and could potentially allow for video rate imaging due to its computational simplicity. We
further consider the application to the problem of an unknown gain or phase value, such as in the measure-
ment of phase with a gradient sensor. And we propose a technique to mitigate the effect by computationally
imaging off-focus planes. The principles are demonstrated with numerical simulations in two dimensions.
© 2010 Optical Society of America

OCIS codes: 180.6900, 110.1758.
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. INTRODUCTION
e consider a simple confocal system such as in Fig. 1(a),
stage-scanning transmissive mode. This may be de-

cribed as a slight variation upon Minsky’s first embodi-
ent of the confocal microscope [1], changed to explicitly

how collimated regions between foci. While modern prac-
ical systems usually function in a laser-scanned reflec-
ive mode [2], we use the system in Fig. 1 because the key
spects of the method presented in this paper are easiest
o explain using the system presented here.

So the transmissive confocal system may be described
s focusing light with one objective onto the focal plane,
hen reimaging that same focus with a second objective
nto a pinhole. The research presented in this paper,
herefore, may be broadly described as an approach to ex-
loit additional collection of light beyond the pinhole.
owever, rather than collecting the entire image plane in
ig. 1, we prefer to collect the signal in the Fourier plane
s shown in Fig. 1(b). Then we wish to form a computa-
ional estimate of the “pinhole signal” which is preferable
n the case of attenuative samples.

Obviously the function of this type of system is to mea-
ure some sample parameter at the focal point, while re-
ecting effects from points away from the focus. If the
ample is treated as a collection of isotropic point scatter-
rs, then the illumination at each point (for a single pin-
ole measurement) is generally considered as a three-
imensional point-spread function (see, e.g., [2]) due to
he illumination objective. Similarly the light collected
rom each point (again for a single pinhole measurement)
s determined by the three-dimensional point-spread
unction of the measurement objective. So the confocal
ystem produces a measurement whose focal response is
ssentially “squared” compared to the full-field micro-
cope. The system then is assumed to produce an image
1084-7529/10/061347-8/$15.00 © 2
hose pixel values relate to the bulk scattering param-
ter of the sample at each point. This is a useful model for
maging fluorescence of a sample, and that application
ominates the use of such microscopes in biomedical im-
ging.
However, we consider that this model of the sample is

ncomplete. The sample may absorb light, an effect which
s poorly addressed by a technique which rejects scatter.
cclusion, for example, may be considered as an extreme

ase of absorption. Generally we may describe the effect of
bsorption with an attenuation coefficient, separate from
he scattering coefficient. Also, refractive index varia-
ions, both at the sample boundary and within thick
amples, may cause varying phase delay in the signal,
sually described as “sample-induced” or “specimen-

nduced” aberrations, and are known to cause significant
roblems with the image quality [3]. Imaging the refrac-
ive index variation as a parameter of interest itself has
een the focus of recent research [4–9]. And this too we
ay address with an attenuation coefficient, in this case

n imaginary one. Combined with absorption, the result
s a complex attenuation in total. In this paper we will de-
ive an efficient method for imaging this complex attenu-
tion coefficient with a confocal microscope using compu-
ational detection, and compare it to the conventional
etection approach.
In the next section we will relate the signal at the Fou-

ier plane to the pinhole estimate and to the attenuation
oefficient of the sample, thereby showing the assumption
ade by a conventional confocal system in a measure-
ent of attenuation, for comparison. Then we will di-

ectly derive an estimate of the attenuation coefficient at
he focus using the Fourier plane signal. Finally we will
onsider the effect of unknown amplitude and phase on
he estimates. This paper provides the first presentation,
010 Optical Society of America
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o our knowledge, of this simple computation method to
stimate the focus in a scanning confocal-based system,
s well as the first treatment of an unknown phase or at-
enuation in the detector in such a system.

. CONVENTIONAL PINHOLE ESTIMATE
sing the Fraunhofer diffraction theory [10], we can re-

ate the Fourier plane and image plane signals to describe
he pinhole estimate. The value detected at the pinhole is
he intensity of the image plane signal at �x� ,y��= �0,0�.
e describe this intensity value as I�x0 ,y0 ,z0�, where

0,y0 ,z0 is the location of the translation stage when this
ntensity is detected at the pinhole. Similarly the complex
ignals u and v are functions of the focal point location,

I�x0,y0,z0� = �v�0,0;x0,y0,z0��2

= �� �
Aperture

u�x�,y�;x0,y0,z0�dx�dy��2

.

�1�

e consider the interpretation of this value as it relates
o bulk properties of the sample. If we assume that by
ome means we are able to measure the complex signal at
he pinhole (such as in [11]), then we have the complex
mplitude measurement,

A�x0,y0,z0� =� �
Aperture

u�x�,y�;x0,y0,z0�dx�dy�, �2�

here I�x0 ,y0 ,z0�= �A�x0 ,y0 ,z0��2. Considering the point-
pread function view of imaging, we assume a sample con-
isting of only a small attenuating region at the focus,
hich produces an attenuated measurement,

Pinhole &
Detector

Collimated Source

Sample on
translation
stage

Focal Plane

Image Plane

( , , )x y z

( , )x y� �

( , )x y�� ��
� �,v x y�� ��

� ,u x y�

z
x

y

(a)

� Image P

Fourier Plane

Fig. 1. (Color online) Confocal system. (a
A�x0,y0,z0� = e−��x0,y0,z0��xA0, �3�

sing the Beer–Lambert law [12], where A0 is the ampli-
ude measurement in the absence of the sample attenua-
ion and �x is the attenuating region thickness (in depth).
�x0 ,y0 ,z0� is the attenuation coefficient, which may in
eneral be complex. For example the real part is a typical
ttenuation, and the imaginary part could be the integral
long rays of the refractive index variation. This would
orrespond to using the eikonal approximation for the
elmholtz equation with a varying refractive index and a
onochromatic source (see, e.g., [13], Chap. 8).
Solving for �, the sample property of interest, we get

��x0,y0,z0� = −
1

�x
log A�x0,y0,z0� +

1

�x
log A0

= − log A�x0,y0,z0�, �4�

here we have set A0 and �x equal to 1 for simplicity. So,
y combining Eqs. (2) and (4), we have

��x0,y0,z0� = − log�� �
Aperture

u�x�,y�;x0,y0,z0�dx�dy�� .

�5�

We argue that this is implicitly assumed to be the mea-
urement of attenuation using a conventional confocal
ystem, even when the attenuation is not concentrated at
single point, but present (and perhaps varying) across

he entire sample. In such a case a confocal system still
rovides an image of the attenuation parameter by scan-
ing and sampling this value. But it may not be the best
pproach for such a sample since attenuation is a multi-
licative effect, not linear or shift-invariant.

Computer

Coherent
Detector

� Image Pixel
, ,x y zI

� �,u x y� �

(b)

, ,x y z

entional and (b) computational systems.
��
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. COMPUTATIONAL ESTIMATE
ow we will derive a direct estimator for the attenuation
arameter. Figure 2 shows the effect on the Fourier plane
ignal of attenuation at a given point which is in general
way from the focus.
The effect on the Fourier plane signal from a single

oint attenuation is given by

�x�,y�;x0,y0,z0�

= �A�xs,ys,zs�u0�x�,y��, if �x�,y�� =
f

zs − z0
�xs − x0,ys − y

u0�x�,y��, otherwise,

�6�

here f is the focal length. By taking the logarithm (we
se log to denote the natural logarithm, i.e., base e) we
onvert this into an additive effect. And for a sample with
uch points everywhere, described as a�x ,y ,z�, we inte-
rate this over all points on the sample (i.e., let xs ,ys ,zs
ange over all x ,y ,z) to get

log u�x�,y�;x0,y0,z0� =��� �
x� − f
x − x0

z − z0
,

y� − f
y − y0

z − z0
�log A�x,y,z�dxdydz,

�7�

here � is the Dirac delta function. We assume that the
ample is infinite in size (and simply equal to zero as nec-
ssary) so the integrals run over all infinity initially. We
ave also set u0, the unattenuated signal, equal to 1 as
his term is sample independent and may be measured
uring system calibration and subtracted out of the mea-
ured data. We can simplify this to

x

z

f

( , , )s s sx y z

x�
Fourier
Plane

0 0 0( , , )x y z

ig. 2. (Color online) System geometry. The sample is assumed
tationary, and the optical system is translated relative to it, as
etermined by the location of the focus at x0 ,y0 ,z0. The optical
xis is vertical.
log u�x�,y�;x0,y0,z0� =� log A
x�

f
�z − z0�

+ x0,
y�

f
�z − z0� + y0,z�dz

= −� �
x�

f
�z − z0�

+ x0,
y�

f
�z − z0� + y0,z�dz. �8�

Equation (8) is an expression for the attenuation at
ach point in the Fourier plane as a result of the integra-
ion of the attenuation along the ray through the sample
hich intersects that point. One may recognize that such
n integral may form the basis for a Radon transform of
, formed by appropriately translating the stage. Hence
ne approach [to invert Eq. (8) and estimate �] may be to
ollect the complex Fourier plane signal for a range of
oints in a scan, and then compute an inverse Radon
ransform [14] of this data. An approach along these lines
as demonstrated in [15].
Our goal here is not to completely invert this expres-

ion, but to extract the focal plane ��x ,y ,z0�, a slice of the
ample at depth z=z0. We might then collect information
t a different depth by physically adjusting the hardware
o focus at the new depth. What we gain from this ap-
roach is a far simpler computational procedure. We show
n Appendix A that by integrating over the aperture for
ach step in a one-dimensional scan in the x-direction,
hen high-pass filtering, we are able to retrieve the value
f the attenuation coefficient at the focus,

�� � log u�x�,y�;x0,y0,z0�dx�dy�� � hx�x0,y0�

= 2���x0,y0,z0�, �9�

here “�” describes the convolution operation and
x�x0 ,y0� is the convolution kernel performing a high-pass
ltering with respect to the scan direction x.
This result may be computed very efficiently. If we scan

he sample along lines in the x-direction, then we must
imply filter the pixel values as they are computed. The
nly additional storage needed beyond the resulting im-
ge is for the taps of the filter. Note that we do not store
perture pixels in the filter taps, just the integrated total
or each point in the scan.

In Appendix B we derive the result for estimating an
ff-focus plane (see Fig. 3),

�� log u
x�,y�;x0,y0,
�z

f
x� − x0,

�z

f
y�

− y0�dx�� � hx�x0,y0� = 2���x0,y0,z0 − �z�. �10�

his is essentially a filtered backprojection. We must
igh-pass filter a collection of aperture measurements,
hen interpolate a ray through that filtered data to the re-
ult. Clearly this is a much more computationally inten-
ive operation.
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We compare the computational estimate of the attenu-
tion coefficient at the focus to the conventional pinhole
stimate in Table 1, where the integrals refer to integra-
ion over the aperture in both cases. So the pinhole esti-
ate of the pixel is the logarithm of the integrated aper-

ure signal (performed with an objective lens), while the

Table 1. Comparison of Estimates

tandard pinhole estimate ��x ,y ,z�=−log�ux,y,z�
omputational pinhole estimate ��x ,y ,z�=−�log ux,y,z��hx

ig. 4. (a) Synthetic attenuation image, (b) image formed from
epth scan of focal plane, (c) image formed from depth scan of off-
ocus plane, (d) image formed from depth scan of conventional
onfocal estimate of focal plane.

Focal
plane

Fourier Plane

Potential
off-Focus
planes

ig. 3. (Color online) Focal plane and “off-focus” planes. The fo-
al plane is scanned at high rate, but we may choose to instead
omputationally form an image at a different plane.
ew estimate is the filtered integral of the logarithm of
he aperture signal, performed computationally.

In Fig. 4 we provide simulation results of the estimates
or a two-dimensional situation scanned over depth. Each
orizontal line in the images is an estimate of the “plane”
orresponding to horizontal lines in the sample; the axial
irection is vertical. The estimate was formed for each
uch line in the simulated sample to demonstrate the
epth resolution of the methods. The simulation used a
umerical aperture of 0.75.

. UNKNOWN PHASE OR GAIN
inally we consider an interesting potential application of
ff-focus depth sectioning, its ability to filter out an un-
nown attenuation applied to each aperture measure-
ent. This may result, for example, from the use of a
avefront sensor with a limited or no ability to measure

he piston component of the phase. Another example
ight be a system which uses an adaptive gain control
echanism but does not store the gain values. We will

how that while these attenuation terms have the unfor-
unate result of being indistinguishable from the focal-
lane signal, this does allow us to filter them out in prin-
iple by sectioning an off-focus plane.

An unknown attenuation effect can be incorporated by
pplying an amplitude term a�x0 ,y0� to the aperture sig-
al u�x� ,y��. a�x0 ,y0� is constant over the aperture but
hanges for different focal points x0 ,y0 in the scan,

ua�x�,y�� = a�x0,y0�u�x�,y��. �11�

learly the conventional estimate is completely corrupted
y this unknown value since it is just the integral over the
perture. Further we can see that such an error term is
ndistinguishable from a focal-plane signal with the to-

ographic estimate. By taking the log,

log ua�x�,y�� = log a�x0,y0� + log u�x�,y��

= log a�x0,y0� −� �
x�

f
�z − z0�

+ x0,
y�

f
�z − z0� + y0,z�dz. �12�

hen as we estimate the depth section at the focus by in-
egrating over the aperture and high-pass filtering, we
et

�� � log ua�x�,y�;x0,y0,z0�dx�dy�� � hx�x0,y0�

= �� � log a�x0,y0,z0�dx�dy�� � hx�x0,y0�

+ �� � log u�x�,y�;x0,y0,z0�dx�dy�� � hx�x0,y0�

= N2 log a�x0,y0,z0� � hx�x0,y0� + 2���x0,y0,z0�, �13�

here N2 is the area of the aperture. So a high-pass fil-
ered version of the unknown attenuation term is added
irectly to the focal result.
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Now for the off-focus depth section,

1

�2��2��� kx

f
e−j��z/f��x�kx+y�ky�

��log ua�x�,y���ej�kxx0+kyy0�dx�dkxdky

= error term + 2���x0,y0,z0 − �z�, �14�

error term =
1

�2��2��� kx

f
e−j��z/f��x�kx+y�ky�

��� � log a�x0,y0�e−j�kxx0+kyy0�dx0dy0�
�ej�kxx0+kyy0�dx�dkxdky

=
1

�2��2�� kx

f
e−j��z/f�y�ky�� e−j��z/f�x�kxdx��

��� � log a�x0,y0�e−j�kxx0+kyy0�dx0dy0�
�ej�kxx0+kyy0�dkxdky. �15�

ig. 5. (Color online) Simulation of application of random at-
enuation (at given multiples larger than true signal) to each ap-
rture measurement. (a) Example of random attenuation values
solid curve) versus true attenuation (dashed curve) for 5�, (b)
mage formed for 5�, (c) image formed for 10�, (d) image formed
or 25�.
e set y�=0 for simplicity (see Appendix B). The error
erm resulting from the unknown attenuation can be de-
cribed as the inverse Fourier transform of a product of
hree terms. We write the result as

error term = hx�x0,y0� � w�x0,y0� � log a�x0,y0�. �16�

his term will be significantly attenuated for off-focus
oints, approaching zero in the large-aperture limit, be-
ause the unknown attenuation is convolved with both a
igh-pass filter, hx�x0 ,y0�, and a low-pass filter, w�x0 ,y0�.
he low-pass filter is the Fourier transform of the aper-

ure itself.
In Fig. 5 the results of a simulation (numerical aper-

ure of 0.75) are provided with random attenuation ap-
lied to the aperture measurement at different multiples
f the maximum attenuation in the image. The image is
ormed for each multiple by computing the focus and all
ff-focus planes (with the focus always fixed at the center
epth, unlike the previous simulation).
As can be seen from the simulation results, the major-

ty of the degradation due to the random attenuation ap-
ears at the central horizontal line, which is the focus.
or lines away from the center, the estimate given is the
orresponding off-focus estimate and the degradation rap-
dly decreases.

. DISCUSSION
his paper considered the issue of depth sectioning of an
ttenuative sample with a scanning approach inspired by
he confocal microscope. We discussed the application of
he conventional confocal microscope to this situation
hen compared it to a computational estimate derived
rom a tomographic perspective. This result was espe-
ially interesting in its computational simplicity. A simu-
ation further demonstrated the potential of the approach
ompared to the conventional confocal estimate. We fur-
her considered an interesting application of using the off-
ocus estimate which, while more computationally diffi-
ult to estimate, is able to filter out unknown gain or
hase at the aperture signal. A simulation demonstrating
his result was also provided.

In deriving the tomographic approach we assumed that
he integrals were over the entire axes, which corre-
ponds to an assumption that the numerical aperture cov-
rs the entire 180° range. Of course in practice we have a
imited aperture and therefore suffer limited-angle arti-
acts, just as those which arise in conventional computed
omography systems when limited angles of rotation are
sed [16]. These effects were evident in the simulations.
lso the integration limits determine the range of spatial

requencies collected and hence the resolution. See [17]
or more discussion of this relationship in a tomographic
ystem.

Further, we note that the assumption of straight rays is
n approximation in the case of the index variation. We
onsider that beyond the initial sample-air or sample-oil
nterface (which may be treated deterministically as the
nterface may be assumed to be known), the index varia-
ions with biological samples tend to be relatively small
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or most structures. There is generally very little reflec-
ion from structure boundaries; hence staining is typically
eeded.
We believe that the computational estimate of the focal

lane may allow for video rate depth sectioning due to its
implicity. Certainly the logarithm, integral, and filtering
ay be performed extremely quickly. The estimation of

he complex attenuation requires more careful consider-
tion and effort, perhaps involving phase unwrapping. Fi-
ally, while the derivation used stage-scanning, which is
ifficult to perform at high rates with biological samples,
he adaptation to laser-scanning is straightforward. For
xample, in a laser-scanning system where the beam is
ranslated electromechanically without rotation or shear-
ng, the relative motion is identical.

PPENDIX A: FOCAL POINT
irst we review the different coordinate variables in-
olved in Table 2. We start from the logarithmic-aperture
ignal,

log u�x�,y�;x0,y0,z0�

= −� �
x�

f
�z − z0� + x0,

y�

f
�z − z0� + y0,z�dz,

�A1�

nd we use the following form of the projection-slice theo-
em:

��� ��x − az,y − bz,z�e−j�kxx+kyy�dxdydz

= �̃�kx,ky,akx + bky�, �A2�

here �̃�kx ,ky ,kz� is the three-dimensional Fourier trans-
orm of ��x ,y ,z�. This gives the “slice” in the frequency
omain that one would interpolate the Fourier-
ransformed projection into, with a direct Fourier method.

First we take the two-dimensional Fourier transform of
q. (A1) with respect to the focal point locations, x0 and

0, i.e., � �e−j�kxx0+kyy0�dx0dy0. This can be viewed as
nalogous to taking the Fourier transform of a projection
n a direct Fourier method for computed tomography. This
ields

�� log u�x�,y�;x0,y0,z0�e−j�kxx0+kyy0�dx0dy0

= �̃
kx,ky,−
x�

f
kx −

y�

f
ky�e−j�z0/f��x�kx+y�ky�. �A3�

he trailing exponential term on the right-hand side

Table 2. Coordinates Used

,y ,z
The spatial coordinates within which the sample

��x ,y ,z� resides.

0 ,y0 ,z0

The spatial coordinates of the system focus, which
vary within x ,y ,z via scanning.

� ,y�

Coordinates of the samples at the Fourier plane,
i.e., at the entrance aperture of the microscope

objective. Relate as �x ,y ,z�= �x0+x� ,y0+y� ,z0+ f�.
RHS) results from the shifting property of the Fourier
ransform.

Now our goal is to extract a single plane of �; hence we
ill not need to perform the interpolation and inverse
ourier transform in the kz spatial frequency. We only
eed to perform a single integral in that axis. This may be
chieved a number of ways with Eq. (A3), corresponding
o different data collection and image formation tech-
iques.
We multiply Eq. (A3) by kxf−1 and integrate over x�. For

he RHS this gives

� kx

f
�RHS�dx�

=� kx

f
�̃
kx,ky,−

x�

f
kx −

y�

f
ky�e−j�z0/f��x�kx+y�ky�dx�

=−� �̃�kx,ky,�x�ejz0�xd�x, �A4�

here we have made the following change of variables:

�x = −
x�

f
kx −

y�

f
ky,

d�x = −
kx

f
dx�. �A5�

erforming the inverse Fourier transform of Eq. (A4) with
espect to kx and ky, we may extract the value of the at-
enuation at focus. First for the RHS,

1

�2��2��� kx

f
�RHS�ej�kxx0+kyy0�dx�dkxdky

=
1

�2��2��� �̃�kx,ky,�x�ejz0�xd�xe
j�kxx0+kyy0�dkxdky

=2���x0,y0,z0�. �A6�

pplying the same operations to the left-hand side (LHS)
ives

1

�2��2��� kx

f
�LHS�ej�kxx0+kyy0�dx�dkxdky

=
1

�2��2��� kx

f �� � log u�x�,y�;x0,y0,z0�

�e−j�kxx0+kyy0�dx0dy0�ej�kxx0+kyy0�dx�dkxdky

=�� log u�x�,y�;x0,y0,z0�dx�� � hx�x0,y0�, �A7�

here we have written the LHS as a convolution with the
lter
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hx�x0,y0� ↔ Hx�kx,ky� =
kx

f
. �A8�

nd so the combined result is

�� log u�x�,y�;x0,y0,z0�dx�� � hx�x0,y0� = 2���x0,y0,z0�.

�A9�

his result is independent of y�. In other words, within an
perture of pixels enumerated by x� and y� we have inte-
rated over x� and have computed a value which we ex-
ect to be constant over y�. Therefore we may integrate
his dimension as well (to average out noise, for example)
ielding an estimate based simply on the sum over the en-
ire aperture,

�� � log u�x�,y�;x0,y0,z0�dx�dy�� � hx�x0,y0�

= 2���x0,y0,z0�. �A10�

PPENDIX B: OFF-FOCUS POINTS
eturning to Eq. (A3), which we reproduce here,

�� log u�x�,y�;x0,y0,z0�e−j�kxx0+kyy0�dx0dy0

= �̃
kx,ky,−
x�

f
kx −

y�

f
ky�e−j�z0/f��x�kx+y�ky�, �B1�

e may perform an estimate of points off focus by apply-
ng the linear phase exp�−j�zf−1�x�kx+y�ky�� (chosen to
chieve translation �z in the z-direction) to both sides
rior to the integration over x� and the inverse Fourier
ransforms. Repeating the steps from Appendix A, but
ith the shifted coordinate �z0−�z�,

1

�2��2��� kx

f
e−j��z/f��x�kx+y�ky��RHS�ej�kxx0+kyy0�dx�dkxdky

=
1

�2��2��� kx

f
e−j��z/f��x�kx+y�ky���̃
kx,ky,−

x�

f
kx

−
y�

f
ky�e−j�z0/f��x�kx+y�ky��ej�kxx0+kyy0�dx�dkxdky

=
1

�2��2��� kx

f ��̃
kx,ky,−
x�

f
kx

−
y�

f
ky�e−j��z0+�z�/f��x�kx+y�ky��ej�kxx0+kyy0�dx�dkxdky

=
1

�2��2��� �̃�kx,ky,�x�ej�z0+�z��xd�xe
j�kxx0+kyy0�dkxdky

=2���x0,y0,z0 + �z�. �B2�

pplying the same operations to the LHS of Eq. (A3),
1

�2��2��� kx

f
e−j��z/f��x�kx+y�ky��LHS�ej�kxx0+kyy0�dx�dkxdky

=
1

�2��2� ��� kx

f
exp�− j
�z

f
x� − x0�kx − j
�z

f
y�

− y0�ky��LHS�dkxdky�dx�. �B3�

e have a similar result as derived for the focal plane
see Eq. (A7)], but now with shifted coordinates. So the
et result is

�� log u
x�,y�;
�z

f
x� − x0,

�z

f
y� − y0,z0�dx�� � hx�x0,y0�

= 2���x0,y0,z0 − �z�. �B4�

o we must interpolate, then integrate and high-pass fil-
er. This demonstrates the value gained from sectioning
t the focus since collecting an off-focus section requires
ignificantly more storage.

The value of y� (corresponding to pixels in the aperture
ff-center in the direction perpendicular to the direction
f scanning) causes the location of the final measured re-
ult to be off-center as well. Assuming that we will collect
hese values subsequently anyway, such as with a raster
can, we can simply choose y�=0 and ignore this issue. In
ractice we may want to use them to perform averaging
etween different measurements of the same points taken
rom different times in the raster scan. In other words, for
he focal-plane case different values of y� in the same ap-
rture give redundant measurements of the same mea-
urement point (i.e., the focus), while for the off-focus case
he redundancy is between different apertures.
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